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Abstract. The two-electron multicentre Coulomb integrals constitute the rate-limiting step of
ab initio and density functional theory (DFT) molecular structure calculations. Speed-up can
be achieved by limiting the number of integrals to evaluate analytically but these analytical
evaluations remain rate-limiting for large molecules. Here we apply the nonlinearD- and D̄-
transformations to evaluate Coulomb integrals overB-functions more rapidly than the alternative
transformation methods to a given predetermined high accuracy.

1. Introduction

Coulomb integrals are present in all the accurate molecular electronic structure calculation
techniques. At theab initio level, the two-, three- and four-centre two-electron integrals
have long been the source of bottlenecks, particularly over the otherwise preferable Slater-
type orbital basis [1, 2].

This paper aims at rapid and accurate analytic evaluation of multicentre two electron
integrals. It can be appliedab initio (with a partition into analytic and asymptotic evaluation
regions). In DFT, we also need two-centre Coulomb integrals and a three-centre term
from the potential. The neglect of diatomic differential overlap (NDDO) (semi-empirical)
Hamiltonians include the two-centre integrals [3–6]. We present a method applicable to all
two-electron multicentre integrals including evidence of its efficiency compared with the
routine alternatives.

A basis set ofB-functions that was introduced in quantum chemistry calculations by
Shavitt, Steinborn, Weniger, Filter and Groterndorst [7–13] is used. These functions are well
adapted to the Fourier transform method [10, 15], which is still one of the most successful
methods for the evaluation of multicentre integrals: where the integrals are transformed
into inverse Fourier integrals. Evaluation of two-electron multicentre integrals by this
method involves oscillatory semi-infinite integrals [12, 17, 20, 21], which present severe
mathematical and computational difficulties.

The approach to these integrals in this paper is to apply the nonlinear transformations
D (due to Levin and Sidi) and̄D (due to Sidi) [22–27], to accelerate their convergence.
These transformations are efficient in the evaluation of oscillatory infinite integrals whose
integrands satisfy linear differential equations with coefficients that have asymptotic
expansions in inverse powers of their arguments. To apply these transformations
successfully, we only need to show the existence of such a differential equation and its
order.

0305-4470/98/448941+11$19.50c© 1998 IOP Publishing Ltd 8941
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To demonstrate the superiority of these transformations, we compared the numerical
results with others obtained using Gauss–Laguerre quadrature, the epsilon algorithm of
Wynn [28, 29] and Levin’su-transform [29, 30], after transforming the infinite integral into
infinite series. We also compared the calculation times for a given accuracy.

2. Definitions and basic formulae

The Slater orbitals are given in normalized form [12, 13, 17–22] by

χmn,l(ζr) = N(n, ζ )rn−1e−ζ rYml (θr, ϕr) (1)

whereN(n, ζ ) = ζ−n+1 (2ζ )2n+1/(2n)!]
1
2 .

TheB-functions are defined [12, 13, 17–22] as follows:

Bmn,l(ζr) =
(ζ r)l

2n+l(n+ l)! k̂n− 1
2
(ζ r)Yml (θr, ϕr) (2)

where the reduced Bessel functionk̂n− 1
2

is defined [31] as

k̂n− 1
2
(ζ r) =

√
2

π
(ζ r)n−

1
2Kn− 1

2
(ζ r) = e−ζ r

ζ r

n∑
j=1

(2n− j − 1)!

(j − 1)!(n− j)! 2j−n(ζ r)j (3)

whereKn− 1
2

stands for the modified Bessel function of the second kind.
The reduced Bessel functions satisfy the three-term recurrence relation [31]:

k̂n+ 1
2
(z) = 2(n− 1

2)k̂n− 1
2
(z)+ z2k̂(n−1)− 1

2
(z). (4)

The regular solid harmonic is given [12, 16, 20, 21] by

Yml (r) = rlYml (θr , ϕr) (5)

= im+|m|rl
[
(2l + 1)(l − |m|)!)

4π(l + |m|)!)
] 1

2

P
|m|
l cos(θr)e

imϕr (6)

whereYml (θ,$) is the spherical harmonic andPml (x) is an associated Legendre polynomial.

The Gaunt coefficients are defined [12, 20, 21] as

〈l1m1|l2m2|l3m3〉 =
∫ 4π

ω=0
[Ym1
l1
(ω)]∗Ym2

l2
(ω)Y

m3
l3
(ω) dω. (7)

The STFs (and their Fourier transforms) can be expressed as a finite linear combination
of B-functions (or of Fourier transforms ofB-functions) [13–15, 18, 19]:

χmn,l(ζr) =
n−l∑
p=p̃

(−1)n−l−p(n− l)!2l+p(l + p)!
(2p − n− l)!(2n− 2l − 2p)!!

Bmp,l(ζr) (8)

where

p̃ =
{
(n− l)/2 if n− l is even

(n− l + 1)/2 if n− l is odd.
(9)

The double factorial is defined by

(2k)!! = 2× 4× 6× · · · × (2k) = 2kk! (10)

(2k + 1)!! = 1× 3× 5× · · · × (2k + 1) = (2k + 1)!

2kk!
(11)

0!! = 1. (12)
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The Fourier transformB̄mn,l(ζ,p) of Bmn,l(ζr) is given [14, 15, 17–21] by

B̄mn,l(ζ,p) =
1

(2π)3/2

∫
r

e−ip.rBmn,l(ζr) dr (13)

=
√

2

π
ζ 2n+l−1 (−i|p|)l

(ζ 2+ |p|2)n+l+1
Yml (θp, ϕp). (14)

This analytical form of the Fourier transform ofBmn,l(ζr) is obtained by inserting the well
known Rayleigh expansion of the plane wavefunction [12, 32] in equation (13):

e±ip.r =
+∞∑
λ=0

λ∑
µ=−λ

4π(±i)λjλ(|p||r|)Yµλ (θr, ϕr)[Yµλ (θp, ϕp)]∗ (15)

wherejλ is the spherical Bessel function ofλth-order [31] and|r| is the modulus of vectorr.
The integral representation of the Coulomb operator1|r−R1| is given [19, 33] by

1

|r −R1| =
1

2π2

∫
k

e−ik.(r−R1)

k2
dk. (16)

3. Two electron multicentre integrals overB-functions

These integrals are defined [12, 17, 20, 21] as

J n2l2m2,n4l4m4
n1l1m1,n3l3m3

= 〈Bm1
n1l1

[ζ1(r −R1)]B
m3
n3l3

[ζ3(r
′ −R3)]

∣∣∣∣ 1

|r − r′|
∣∣∣∣

×Bm2
n2l2

[ζ2(r −R2)]B
m4
n4l4

[ζ4(r
′ −R4)]〉 (17)

=
∫
r,r′

[Bm1
n1l1
(ζ1(r −R1))]

∗[Bm3
n3l3
(ζ3(r

′ −R3))]
∗ 1

|r − r′|
×Bm2

n2l2
[ζ2(r −R2)] drBm4

n4l4
[ζ4(r

′ −R4)] dr dr′. (18)

We apply the Fourier transform method after substituting the integral representation
of the Coulomb operator, equation (16). We substitute the analytical expression ofB-
functions, equation (2), into the above equation, and using the Rayleigh expansion of the
plane wavefunctions, equation (15), the expression for these integrals involving a three-
dimensional integral representation [12, 17, 20, 21, 36, 37] is

µ = m′2+ (m1−m′1)− (m4−m′4)+ (m3−m′3)
|(l1− l′1)− (l2− l′2)| 6 l12 6 (l1− l′1)+ (l2− l′2)
|(l3− l′3)− (l4− l′4)| 6 l34 6 (l3− l′3)+ (l4− l′4)
µ1i = max(−l′i;mi − li + l′i ) for i = 1, 2, 3, 4

µ2i = min(li;mi + li − l′i ) for i = 1, 2, 3, 4

[γ12(s, x)]
2 = (1− s)ζ 2

1 + sζ 2
2 + s(1− s)x2

[γ34(t, x)]
2 = (1− t)ζ 2

3 + tζ 2
4 + t (1− t)x2

v = |(1− s)R21− (1− t)R43− R31|
n12 = n1+ n2+ l1+ l2− l − j12

n34 = n3+ n4+ l3+ l4− l′ − j34

1l12 = l′1+ l′2− l
2

1l34 = l′3+ l′4− l′
2

Rij = Ri − Rj i, j = 1, 2, 3, 4
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J n2l2m2,n4l4m4
n1l1m1,n3l3m3

= 8(4π)5(2l1+ 1)!!(2l2+ 1)!!
(n1+ l1+ n2+ l2+ 1)!

(n1+ l1)!(n2+ l2)! ζ
2n1+l1−1
1 ζ

2n2+l2−1
2

×(−1)l1+l2(2l3+ 1)!!(2l4+ 1)!!
(n3+ l3+ n4+ l4+ 1)!

(n3+ l3)!(n4+ l4)! ζ
2n3+l3−1
3 ζ

2n4+l4−1
4

×
l1∑
l′1=0

µ12∑
m′1=µ11

il1+l
′
1
〈l1m1|l′1m′1|l1− l′1m1−m′1〉
(2l′1+ 1)!![2(l1− l′1)+ 1]!!

×
l2∑
l′2=0

µ22∑
m′2=µ21

il2+l
′
2(−1)l

′
2
〈l2m2|l′2m′2|l2− l′2m2−m′2〉
(2l′2+ 1)!![2(l2− l′2)+ 1]!!

×
l3∑
l′3=0

µ32∑
m′1=µ31

il3+l
′
3
〈l3m3|l′3m′3|l3− l′3m3−m′3〉
(2l′3+ 1)!![2(l3− l′3)+ 1]!!

×
l4∑
l′4=0

µ42∑
m′4=µ41

il4+l
′
4(−1)l

′
4
〈l4m4|l′4m′4|l4− l′4m4−m′4〉
(2l′4+ 1)!![2(l4− l′4)+ 1]!!

×
l′1+l′2∑

l=|l′1−l′2|
〈l′2m′2|l′1m′1|lm′2−m′1〉Ym

′
2−m′1

l (R21)

×
∑
l12

〈l2− l′2m2−m′2|l1− l′1m1−m′1|l12m2−m′2− (m1−m′1)〉

×
l′3+l′4∑

l′=|l′3−l′4|
〈l′4m′4|l′3m′3|l′m′4−m′3〉Ym

′
4−m′3

l′ (R43)

×
∑
l34

〈l4− l′4m4−m′4|l3− l′3m3−m′3|l34m4−m′4− (m3−m′3)〉

×
l12+l34∑

λ=|l12−l34|
(−i)λ〈l12m2−m′2− (m1−m′1)|

×l34m4−m′4− (m3−m′3)|λm2− µ〉

×
1l12∑
j12=0

1l34∑
j34=0

(
1l12

j12

)(
1l34

j34

)
(−1)j12+j34

2n12+1+l+n34+1+l′(n12+ 1+ l)!(n34+ 1+ l′)!

×
∫ 1

s=0

sn2+l2+l1(1− s)n1+l1+l2

sl
′
1(1− s)l′2

∫ 1

t=0

tn4+l4+l3(1− t)n3+l3+l4

t l
′
3(1− t)l′4 Y

m2−µ
λ (θv, ϕv)

×
∫ +∞
x=0

xl1−l
′
1+l2−l′2+l3−l′3+l4−l′4jλ(vx)

k̂n12+ 1
2
[R21γ12(s, x)]

[γ12(s, x)]2(n1+l1+n2+l2)−(l′1+l′2)−l+1

×
k̂n34+ 1

2
[R43γ34(t, x)]

[γ34(t, x)]
2(n3+l3+n4+l4)−(l′3+l′4)−l′+1

dx dt ds. (19)

The inner semi-infinitex integral was evaluated by Gauss–Laguerre quadrature and
the outers and t integrals by Gauss–Legendre formulae [12, 34]. Unfortunately, as we
showed in previous work [22], for three-centre nuclear attraction integrals, the use of
Gauss–Laguerre quadrature presents severe numerical difficulties for this kind of integral,
especially for large values ofv since the inner integrand oscillates very rapidly due to the
spherical Bessel function, and therefore new numerical integration techniques are required.
In this work, we focus our attention on the nonlinearD- and D̄-transformations [22–27].



Efficient evaluation of Coulomb integrals 8945

They are efficient in evaluating semi-infinite integrals of rapidly oscillating functions which
satisfy linear differential equations of the formf (t) = ∑m

k=1pk(t)f
(k)(t), wherepk are

in A(ik), ik 6 k for k = 1, 2, . . . , m; and whereA(γ ) is the set of infinitely differentiable
functionsa(x), which asx → +∞, have an asymptotic expansion in inverse powers of
x of the form: a(x) ∼ xγ (α0 + α1

x
+ α2

x2 + · · ·). limx→+∞ p
(i−1)
k (x)f (k−i)(x) = 0, with

k = i, i + 1, . . . , m, and i = 1, 2, . . . , m, ∀l > −1,
∑m

k=1 l(l − 1) . . . (l − k + 1)pk,0 6= 1
wherepk,0 = limx→+∞ x−kpk(x).

In order to apply these transformations successfully, there is no need to know explicitly
the differential equation that the integrand satisfies: knowledge of its existence and its order
is sufficient. In [22] we showed the superiority of these transformations in the evaluation
of three-centre nuclear attraction integrals.

For simplicity, we shall focus our attention on the the simple case of s-functions
corresponding tol1 = l2 = l3 = l4 = m1 = m2 = m3 = m4 = 0, but we will let the
order of the spherical Bessel functionλ vary. The equation (19) can then be rewritten as

J n200,n400
n100,n300 =

ζ
2n1−1
1 ζ

2n2−1
2 ζ

2n3−1
3 ζ

2n4−1
4

πn1!n2!n3!n4!2n1+n2+n3+n4

∫ 1

0
sn1(1− s)n2

∫ 1

0
tn3(1− t)n4

×
∫ +∞

0

k̂ν12[R21γ12(s, x)]

[γ12(s, x)]2ν12

k̂ν34[R43γ34(t, x)]

[γ34(t, x)]2ν34
jλ(vx) dx dt ds (20)

whereν12 = n1+ n2+ 1
2 andν34 = n3+ n4+ 1

2.
Now, we consider the inner semi-infinitex integral involved in the above equation. It

is defined as

J̃ n200,n400
n100,n300 (s, t) =

∫ +∞
0

k̂ν12[R21γ12(s, x)]

[γ12(s, x)]2ν12

k̂ν34[R43γ34(t, x)]

[γ34(t, x)]2ν34
jλ(vx) dx (21)

=
+∞∑
n=0

∫ jn+1
λ

jnλ

k̂ν12[R21γ12(s, x)]

[γ12(s, x)]2ν12

k̂ν34[R43γ34(t, x)]

[γ34(t, x)]2ν34
jλ(vx) dx. (22)

jnλ is the root of ordern of the spherical Bessel functionjλ. j0
λ is assumed to be 0.

In the following, this integral will be referred to as̃J (s, t), and the corresponding
integrand asF(x) = f1(x)f2(x)jλ(vx), where

f1(x) = k̂ν12[R21γ12(s, x)]

[γ12(s, x)]2ν12
f2(x) = k̂ν34[R43γ34(t, x)]

[γ34(t, x)]2ν34
.

jλ(vx) satisfies a linear second-order differential equation given [31, 35] by

jλ(vx) = − 2x

(vx)2− λ2− λj
(1)
λ (vx)− x2

(vx)2− λ2− λj
(2)
λ (vx) (23)

= p1,1(x)j
(1)
λ (vx)+ p2,1(x)j

(2)
λ (vx). (24)

Assuming thatR21γ12(s, x) = R21

√
(1− s)ζ 2

1 + sζ 2
2 + s(1− s)x2 =

√
β1+ α1x2 and

R43γ34(s, x) = R43

√
(1− s)ζ 2

3 + sζ 2
4 + t (1− t)x2 =

√
β2+ α2x2, the functionsf1(x) and

f2(x) satisfy linear second-order differential equations given [31, 35] by

f1(x) = x−1

[
(2ν1+ 1)τ1+ δ1τ1

x2

]
f
(1)
1 (x)+

[
τ1− δ1τ1

x2

]
f
(2)
1 (x) (25)

= p1,2(x)f
(1)
1 (x)+ p2,2(x)f

(2)
1 (x) (26)

f2(x) = x−1

[
(2ν2+ 1)τ2+ δ2τ2

x2

]
f
(1)
2 (x)+

[
τ2− δ2τ2

x2

]
f
(2)
2 (x) (27)
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= p1,3(x)f
(1)
2 (x)+ p2,3(x)f

(2)
2 (x) (28)

where

δ1 = −β1

α1
τ1 = 1

α1
δ2 = −β2

α2
and τ2 = 1

α2
.

Thep1,i are inA(−1) andp2,i are inA(0) for i = 1, 2, 3.
We shall now state a lemma and corollary which are proven in [26, 27] and that will

be useful in determining the order of the differential equation which the integrandF(x)

satisfies.

Lemma. If the functionsf and g satisfy linear differential equations of orderm and n
respectively, then their productfg satisfies a linear differential equation of order less than
or equal tomn.

Corollary. If the coefficients of the linear differential equations thatf andg satisfy have
asymptotic expansions in inverse powers ofx asx → +∞, then so do the coefficients of
the linear differential equation thatfg satisfies.

Now, we can easily show that the functionF(x) satisfies a linear differential equation
of order 6 or less, of the form required to apply theD-transformation. In a previous work
[22] we gave the linear fourth-order differential equation satisfied by a function of the form
f1(x)jλ(vx), explicitly.

The coefficientspk for k = 1, 2, . . . ,6 of the linear differential equation thatF(x)
satisfies are linear combinations ofp1,i , p2,i , i = 1, 2, 3 and their successive derivatives,
thuspk ∈ A(ik) whereik 6 0 for k = 1, 2, . . . ,6.

The behaviour ofF(x) and its successive derivatives are dominated by the exponentially
decreasinĝkν and its successive derivatives, thus limx→+∞ p

(i−1)
k (x)F (k−i)(x) = 0, for k =

i, i+1, . . . ,6, andi = 1, 2, . . . ,6. One can easily show thatpk,0 = limx→+∞ x−kpk(x) = 0,
then∀l > −1,

∑6
k=1 l(l − 1) . . . (l − k + 1)pk,0 = 0 6= 1.

The conditions required to apply the nonlinearD-transformation are satisfied. The
approximationsD(6)

m to J̃ (s, t) satisfiesM = 6m+ 1 equations given [26, 27] by

D(6)
m =

∫ xn

0
F(t) dt +

5∑
k=0

F (k)(xn)x
k+1
n

m−1∑
i=0

β̄k,i

xin
n = 0, 1, 2, . . . ,6m. (29)

The xn are chosen to satisfy 0< x0 < x1 < · · · < x6m, and limn→+∞ xn = +∞. D(6)
m and

the β̄k,i for k = 0, 1, . . . ,5; i = 0, 1, . . . , m− 1 are theM unknowns.
Now if we choosexn = jn+1

λ , for n = 0, 1, 2, . . . , which are the zeros ofF(x), then we
can reduce the order of the above set of equations toM = 5m+ 1 which can be rewritten
[23–25] as

D̄(6)
m =

∫ xn

0
F(t) dt +

5∑
k=1

F (k)(xn) x
k+1
n

m−1∑
i=0

β̄k,i

xin
n = 0, 1, 2, . . . ,5m. (30)

D̄(6)
m and theβ̄k,i for k = 1, 2, . . . ,5; i = 0, 1, . . . , m − 1 are theM unknowns. These

expressions are implemented in an original set of Fortran 77 subroutines.
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4. The general case

In the general case, the semi-infinitex integral involved in the two-electron multicentre
integralsJ̃ n2l2m2,n4l4m4

n1l1m1,n3l3m3
(s, t) which will be referred asJ̃G(s, t) is of the form [12, 17, 20, 21]

J̃G(s, t) =
∫ +∞

0
xmx jλ(vx)

k̂n12+ 1
2
[R21γ12(s, x)]

[γ12(s, x)]m12

k̂n34+ 1
2
[R43γ34(t, x)]

[γ34(t, x)]m34
dx (31)

=
+∞∑
n=0

∫ jn+1
λ

jnλ

xmx jλ(vx)
k̂n12+ 1

2
[R21γ12(s, x)]

[γ12(s, x)]m12

k̂n34+ 1
2
[R43γ34(t, x)]

[γ34(t, x)]m34
dx. (32)

mx, λ, n12, n34, m12, m34, γ12(s, x) andγ34(t, x) are defined according to equation (19).
Using the previous arguments, one can easily show that the integrand of the semi-infinite

x integral involved in equation (31) satisfies a sixth-order linear differential equation of the
form required to apply theD- and D̄-transformations. The order of the set of equations
which gives the approximationD(6)

m is M = 6m + 1 but it can be reduced to 5m + 1 by
choosing thexn = jn+1

λ for n = 0, 1, 2, . . . ,5m.

5. Discussion

The exact values of integrals (21) and (32) are computed to 20 correct decimals using the
series expansions given by equations (22) and (32) (see tables 4 and 5). (A Fortran 77
routine has been specially devised for this purpose.)

The finite
∫ jn+1

λ

jnλ
F (x) dx involved in equations (22) and (32) and

∫ jnλ
0 F(x) dx =∑n−1

i=0

∫ j i+1
λ

j iλ
F (x) dx involved in equation (30) are evaluated using Gauss–Legendre

quadrature of order 16. The set of equations (30) is solved using Gaussian elimination
with maximal column pivoting.

The calculation time using thēD-transformation computed with an IBM RS6000 340
is noted (see tables 1 and 5). We also used the epsilon algorithm of Wynn [28, 29] and the
Levin u-transform [29, 30] to evaluate the semi-infinitex integral J̃ (s, t) (equation (21))
andJ̃G(s, t) (equation (31)) by accelerating the convergence of the infinite series given by
equations (22) and (32). The calculation time is also computed to show the superiority of
D̄-transformation (see tables 2, 3 and 6). The integralIn200,n400

n100,n300 (equation (20)) is evaluated
for different values ofn1, n2, n3, n4 andλ, using theD̄-transformation of order 2, Levin’s

Table 1. Evaluation ofJ̃ (s, t) (equation (21)) using thēD-transformation (equation (30)). Time
is in milliseconds. (ζ1 = 2.1, ζ2 = 2.6, ζ3 = 3.1, ζ4 = 1.8, R1 = 1.2, R2 = 3.25, R3 = 4.25,
R4 = 6.75 ands = 0.01).

t m n12 n34 λ D̄
(6)
m Error Time

0.01 1 2 2 0 0.693 350 864 597 446 916D-06 0.1812D-07 0.05
0.01 2 3 2 2 0.594 119 031 449 745 757D-06 0.2319D-11 0.19
0.01 3 3 3 3 0.579 443 696 446 507 191D-06 0.1294D-14 0.48
0.01 4 4 4 4 0.138 323 510 330 356 551D-05 0.1778D-16 0.98
0.99 1 2 2 0 0.335 139 744 246 110 843D-03 0.4174D-06 0.04
0.99 2 3 2 2 0.260 138 750 356 833 778D-03 0.2036D-14 0.19
0.99 3 3 3 3 0.461 713 233 934 115 124D-03 0.5421D-19 0.49
0.99 4 4 4 4 0.191 325 914 385 519 213D-02 0.6505D-18 0.97
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Table 2. Evaluation ofJ̃ (s, t) (equation (21)), Levin’su-transform. Time is in milliseconds.
(ζ1 = 2.1, ζ2 = 2.6, ζ3 = 3.1, ζ4 = 1.8, R1 = 1.2, R2 = 3.25, R3 = 4.25, R4 = 6.75 and
s = 0.01).

t m n12 n34 λ um(S0) Error Time

0.01 2 2 2 0 0.668 576 020 932 511 367D-06 0.6651D-08 0.55
0.01 4 3 2 2 0.594 087 778 432 344 762D-06 0.2893D-10 1.30
0.01 6 3 3 3 0.579 443 844 056 614 544D-06 0.1463D-12 2.23
0.01 8 4 4 4 0.138 323 514 777 015 398D-05 0.4448D-13 3.84
0.99 2 2 2 0 0.333 367 847 810 568 435D-03 0.1355D-05 0.57
0.99 4 3 2 2 0.260 139 032 317 670 401D-03 0.2820D-09 1.31
0.99 6 3 3 3 0.461 713 233 441 734 898D-03 0.4924D-12 2.24
0.99 8 4 4 4 0.191 325 914 385 478 339D-02 0.4094D-15 3.82

Table 3. Evaluation ofJ̃ (s, t) (equation (21)), the epsilon algorithm of Wynn. Time is in
milliseconds. (ζ1 = 2.1, ζ2 = 2.6, ζ3 = 3.1, ζ4 = 1.8, R1 = 1.2, R2 = 3.25, R3 = 4.25,
R4 = 6.75 ands = 0.01).

t m n12 n34 λ ε0
m Error Time

0.01 2 2 2 0 0.678 328 605 359 331 317D-06 0.3102D-08 0.56
0.01 4 3 2 2 0.594 143 016 808 293 294D-06 0.2630D-10 1.30
0.01 6 3 3 3 0.579 483 040 814 865 933D-06 0.3934D-10 2.23
0.01 8 4 4 4 0.138 323 522 632 148 885D-05 0.1230D-12 3.88
0.99 2 2 2 0 0.334 526 801 546 043 326D-03 0.1955D-06 0.55
0.99 4 3 2 2 0.260 140 497 449 965 564D-03 0.1747D-08 1.31
0.99 6 3 3 3 0.461 713 234 344 733 115D-03 0.4106D-12 2.23
0.99 8 4 4 4 0.191 325 914 385 569 651D-02 0.5037D-15 3.85

Table 4. Evaluation of J̃ (s, t) (equation (21)) using the DGLGQ routine (Gauss–Laguerre
quadrature of orderNGL) available from IBM–ESSL mathematical library [38]. (ζ1 = 2.1,
ζ2 = 2.6, ζ3 = 3.14, ζ4 = 1.8, R1 = 1.2, R2 = 3.25,R3 = 4.25,R4 = 6.75 ands = 0.01.)

t NGL n12 n34 λ DGLDQ Exact values

0.01 40 2 2 0 0.626 353 439 912 286D-06 0.675 226 987 571 87D-06
0.01 20 3 2 2 0.684 327 058 147 507D-06 0.594 116 712 565 53D-06
0.01 10 3 3 3 0.648 248 032 098 591D-06 0.579 443 697 740 71D-06
0.01 40 4 4 4 0.116 766 324 234 304D-05 0.138 323 510 328 57D-05
0.99 32 2 2 0 0.367 771 794 129 447D-03 0.334 722 351 034 20D-03
0.99 64 3 2 2 0.200 636 251 584 565D-03 0.260 138 750 354 79D-03
0.99 48 3 3 3 0.479 123 239 274 658D-03 0.461 713 233 934 11D-03
0.99 64 4 4 4 0.200 161 369 995 836D-02 0.191 325 914 385 51D-02

u-transform of order 6 and the epsilon algorithm of Wynn of order 6 (see tables 7 and 8).
From the values reported in table 4, note that the use of Gauss–Laguerre quadrature

even to high order (for instance 64) gives inaccurate results, especially fors and t close
to 0 or 1. If we lets, t = 0 or 1, the integrandF(x), and equations (21) and (31) will
be reduced to the termjλ(vx), because the termsfi(x), i = 1, 2 become constants and
hence the asymptotic behaviour of the integrandF(x) cannot be represented by a function
of the form e−αxg(x) whereg(x) is not a rapidly oscillating function. We also note that
the regions close tos = t = 0 and s = t = 1 carry very small weight because of their
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Table 5. Evaluation ofJG(s, t) (equation (31)). The inner semi infinite integral was evaluated
using theD̄-transformation of order 3 (̄D(6)

3 ). Time is in milliseconds. (ζ1 = 2.1, ζ2 = 2.6,
ζ3 = 3.1, ζ4 = 1.8, R1 = 1.2, R2 = 3.25, R3 = 4.25, R4 = 6.75, m12 = 2n12 + 1,
m34 = 2n34+ 1 ands = t = 0.01.)

n12 n34 mx λ D̄
(6)
3 Exact values Error Time

2 2 2 3 0.811 031D-07 0.811 009 169 633 874 602D-07 0.2D-11 0.47
2 2 3 1 0.286 313D-06 0.286 312 754 031 869 044D-06 0.1D-14 0.49
3 3 4 3 0.982 144D-06 0.982 155 428 849 900 776D-06 0.1D-10 0.48
4 4 3 2 0.157 213D-05 0.157 213 518 681 928 447D-05 0.7D-11 0.48
4 4 4 3 0.268 975D-05 0.268 976 960 759 980 355D-05 0.2D-10 0.48
5 5 4 4 0.960 641D-05 0.960 686 068 198 986 670D-05 0.4D-09 0.49
6 6 5 5 0.113 655D-03 0.113 661 593 530 865 794D-03 0.7D-08 0.48
6 6 6 6 0.357 697D-03 0.357 682 012 033 322 643D-03 0.1D-07 0.49

Table 6. Evaluation ofJG(s, t) in the general case (equation (31)) using Levin’su-transform of
order 8 (u8(S0)) and the epsilon algorithm of order 8 (ε(0)8 ). Time is in milliseconds. (ζ1 = 2.1,
ζ2 = 2.6, ζ3 = 3.1, ζ4 = 1.8, R1 = 1.2, R2 = 3.25, R3 = 4.25, R4 = 6.75, m12 = 2n12+ 1,
m34 = 2n34+ 1 ands = t = 0.01.)

n12 n34 mx λ u8(S0) Error Time ε
(0)
8 Error Time

2 2 2 3 0.811 039D-07 0.3D-11 2.12 0.811 031D-07 0.2D-11 2.10
2 2 3 1 0.286 313D-06 0.6D-13 2.35 0.286 313D-06 0.8D-13 2.33
3 3 4 3 0.982 162D-06 0.7D-11 3.20 0.982 196D-06 0.4D-10 3.24
4 4 3 2 0.157 214D-05 0.3D-11 3.57 0.157 213D-05 0.7D-11 3.54
4 4 4 3 0.268 979D-05 0.2D-10 3.87 0.268 984D-05 0.7D-10 3.83
5 5 4 4 0.960 736D-05 0.5D-09 4.62 0.960 742D-05 0.6D-09 4.59
6 6 5 5 0.113 679D-03 0.2D-07 5.79 0.113 696D-03 0.3D-07 5.82
6 6 6 6 0.357 823D-03 0.1D-06 6.26 0.358 112D-03 0.4D-06 6.20

Table 7. Evaluation ofJ n200,n400
n100,n300 (equation (20)). The inner semi-infinite integral was evaluated

using theD̄-transformation of order 2 (̄D(6)
2 ). The outer finites and t integrals were evaluated

using the Gauss–Legendre quadrature of order 8. Time is in milliseconds. (R1 = (1.2, 0, 0),
R2 = (3.25, 0, 0), R3 = (4.25, 0, 0) andR4 = (6.75, 0, 0). ζ1 = 2.1, ζ2 = 2.6, ζ3 = 3.1 and
ζ4 = 1.8.)

n1 n2 n3 n4 λ Exact values D̄
(6)
2 Error Time

1 1 1 1 0 0.114 695 794 283 946D-06 0.114 695D-06 0.5D-16 7.0
2 1 2 1 1 0.850 849 767 895 866D-07 0.850 849D-07 0.1D-16 9.0
2 2 2 2 2 0.392 236 030 612 953D-07 0.392 236D-07 0.2D-18 11.0
3 2 3 2 3 0.370 453 241 022 581D-07 0.370 453D-07 0.5D-19 12.0
3 3 3 3 3 0.145 388 237 339 498D-07 0.145 388D-07 0.6D-21 14.0

expressionssn2(1− s)n1, tn4(1− t)n3.

6. Conclusion

The use of the series expansion given by equations (22) and (32) is prohibitively long for
sufficient accuracy, especially fors, t close to 0 or 1.



8950 H Safouhi and P E Hoggan

Table 8. Evaluation ofJ n200,n400
n100,n300 (equation (20)). The inner semi-infinite integral was evaluated

using Levin’su-transform of order 6 (u6(S0)) and the epsilon algorithm of order 6 (ε(0)6 ). The
outer finites andt integrals are evaluated using the Gauss–Legendre quadrature of order 8. Time
is in milliseconds. (R1 = (1.2, 0, 0), R2 = (3.25, 0, 0), R3 = (4.25, 0, 0) andR4 = (6.75, 0, 0).
ζ1 = 2.1, ζ2 = 2.6, ζ3 = 3.1 andζ4 = 1.8.)

n1 n2 n3 n4 λ u6(S0) Error Time ε
(0)
6 Error Time

1 1 1 1 0 0.114 69D-06 0.6D-16 47.0 0.114 69D-06 0.2D-15 48.0
2 1 2 1 1 0.850 84D-07 0.3D-17 63.0 0.850 84D-07 0.6D-16 64.0
2 2 2 2 2 0.392 23D-07 0.7D-18 83.0 0.392 23D-07 0.3D-17 89.0
3 2 3 2 3 0.370 45D-07 0.2D-18 115.0 0.370 45D-07 0.2D-18 120.0
3 3 3 3 3 0.145 38D-07 0.1D-19 132.0 0.145 38D-07 0.4D-19 141.0

Using the epsilon algorithm and Levinu-transform, we accelerate the convergence of
the infinite oscillating series given by equations (22) and (32), but the accuracy is still
insufficient compared with the accuracy obtained using theD̄-transformation (see tables 1–
3, 5–8).

In tables 1–3 fors = 0.01, t = 0.01, n12 = n34 = 3 andλ = 3 we obtain 14 exact
decimals in 0.48 ms usinḡD(6)

3 , 13 exact decimals in 3.48 ms using Levin’su-transform
of order 8, and 12 exact decimals in 3.88 ms using the epsilon algorithm of order 8. For
s = 0.01, t = 0.99, n12 = 3, n34 = 2 andλ = 2 we obtain 14 exact decimals in 0.19 ms
using D̄(6)

2 , 12 exact decimals in 2.24 ms using Levin’su-transform of order 6 and 12
exact decimals in 2.23 ms using the epsilon algorithm of order 6. The evaluation using
the D̄-transformation is thus shown to be 10–12 times faster than the alternatives and even
more accurate.

In tables 5 and 6, forn12 = n34 = 2, mx = 2 andλ = 3 we obtain 11 exact decimals
in 0.47 ms usingD̄(6)

3 , 2.12 ms using Levin’s u-transform of order 8 and 2.10 ms using the
epsilon algorithm of order 8. Forn12 = n34 = 6, mx = 5 andλ = 5 we obtain eight exact
decimals in 0.48 ms usinḡD(6)

3 , seven exact decimals in 5.79 ms using Levin’su-transform
of order 8 and in 5.82 using the epsilon algorithm of order 8.

From the results listed in tables 7 and 8, note that the use ofD̄- andD-transformations
is more accurate for the evaluation ofIn200,n400

n100,n300 given by equation (20) than the use of Levin
u-transform, the epsilon algorithm and the series expansion, since theD̄ of order 2 yields
to better accuracy (more than 15 exact decimals) than the Levin’su-transform of order 6
and the Epsilon-Algorithm of order 6, with major run-time saving.

In most cases, theD- and D̄-transformations are very efficient in evaluating rapidly
oscillatory infinite integrals. They produce approximationsD(n)

m and D̄(n)
m which asm

becomes large converge very quickly to the exact value.
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