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Abstract. The two-electron multicentre Coulomb integrals constitute the rate-limiting step of
ab initio and density functional theory (DFT) molecular structure calculations. Speed-up can
be achieved by limiting the number of integrals to evaluate analytically but these analytical
evaluations remain rate-limiting for large molecules. Here we apply the nonlibeand D-
transformations to evaluate Coulomb integrals a®efunctions more rapidly than the alternative
transformation methods to a given predetermined high accuracy.

1. Introduction

Coulomb integrals are present in all the accurate molecular electronic structure calculation
techniques. At theb initio level, the two-, three- and four-centre two-electron integrals
have long been the source of bottlenecks, particularly over the otherwise preferable Slater-
type orbital basis [1, 2].

This paper aims at rapid and accurate analytic evaluation of multicentre two electron
integrals. It can be applieab initio (with a partition into analytic and asymptotic evaluation
regions). In DFT, we also need two-centre Coulomb integrals and a three-centre term
from the potential. The neglect of diatomic differential overlap (NDDO) (semi-empirical)
Hamiltonians include the two-centre integrals [3—-6]. We present a method applicable to all
two-electron multicentre integrals including evidence of its efficiency compared with the
routine alternatives.

A basis set ofB-functions that was introduced in quantum chemistry calculations by
Shavitt, Steinborn, Weniger, Filter and Groterndorst [7-13] is used. These functions are well
adapted to the Fourier transform method [10, 15], which is still one of the most successful
methods for the evaluation of multicentre integrals: where the integrals are transformed
into inverse Fourier integrals. Evaluation of two-electron multicentre integrals by this
method involves oscillatory semi-infinite integrals [12,17, 20, 21], which present severe
mathematical and computational difficulties.

The approach to these integrals in this paper is to apply the nonlinear transformations
D (due to Levin and Sidi) and (due to Sidi) [22—27], to accelerate their convergence.
These transformations are efficient in the evaluation of oscillatory infinite integrals whose
integrands satisfy linear differential equations with coefficients that have asymptotic
expansions in inverse powers of their arguments. To apply these transformations
successfully, we only need to show the existence of such a differential equation and its
order.
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To demonstrate the superiority of these transformations, we compared the numerical
results with others obtained using Gauss—Laguerre quadrature, the epsilon algorithm of
Wynn [28, 29] and Levin'si-transform [29, 30], after transforming the infinite integral into
infinite series. We also compared the calculation times for a given accuracy.

2. Definitions and basic formulae

The Slater orbitals are given in normalized form [12,13,17-22] by
X ) = N, Or" e " Y" 0, ¢r) @

whereN (n, ¢) = ¢+ (2021 /(2n)!] 2.
The B-functions are defined [12, 13, 17-22] as follows:

!
B;:n,l(fr) = %kn_% @€Y 6y, ¢r) 2

where the reduced Bessel functié,p_% is defined [31] as

eIy n—j-1
2./ n J 3
o L G—Da— 2 C ®)

wherek, 1 stands for the modified Bessel function of the second kind.
The reduced Bessel functions satisfy the three-term recurrence relation [31]:

A 2 1
ky_1(gr) = \/;(U)"_ZKH_;(U) =

j=1

kyi1 (@) = 200 = Ph,_1(2) + Py 1 (). @)
The regular solid harmonic is given [12, 16, 20, 21] by
V') =r'Y" 6, ¢) )
1
et [@ DA mDH T
=i r [ T " cog6,)€e (6)

whereY," (6, w) is the spherical harmonic ar®}” (x) is an associated Legendre polynomial.
The Gaunt coefficients are defined [12, 20, 21] as

4
(lymy|loma|l3m3) =/ [V ()] Y (@)Y (w) do. (7)
-0

The STFs (and their Fourier transforms) can be expressed as a finite linear combination
of B-functions (or of Fourier transforms d-functions) [13-15, 18, 19]:

n—l n—I— I+
(-1 P(n —D127P (1 4 p)!
m — Bm
X (Cr) ; Gp = i@ =2 2yt BT ®)
where

. n—-10/2 if n —1is even

n—14+1)/2 if n —1[ is odd.

The double factorial is defined by
(2N =2x4x6x -+ x (2k) = 2"k! (10)
|

(2k+1)!!=1><3x5><---><(2k+1)=(2k2k—-;'1)' (11)

ol = 1. (12)
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The Fourier transfomB’”,(; p) of B",(¢r) is given [14,15,17-21] by

5 1 )
BZI(C,P) = W/e"’”Bgf,(;r) dr (13)
2 (=ilpD’
:\/;§2n+l lm i (9 ,(pp) (14)

This analytical form of the Fourier transform &f",(¢r) is obtained by inserting the well
known Rayleigh expansion of the plane wavefunction [12, 32] in equation (13):

+oo A

e P =" 3" Ar (i) i (plIrD YL O, o) YL (6. 0p)]° (15)

A=0 u=—x

wherej, is the spherical Bessel function bth-order [31] andr| is the modulus of vector.
The integral representation of the Coulomb oper%{éﬁl is given [19, 33] by

1 1 efik.(rle)
—=— | ———dk. 16
|r — Ry| 272 /k k2 (16)

3. Two electron multicentre integrals over B-functions

These integrals are defined [12,17, 20, 21] as

nalomp,nalamas __
k7111111111,n3l3m3 - nlll[{l(r Rl)] Bn313[§'3(7" R3)] ‘

x B, [¢2(r — R)] B, [¢a(r” — Ra)]) 17)
1
= / [B, (¢1(r — R))]*[ By, (¢3(r' — RS))]* iy
X B2 [¢2(r — Rp)]dr By [2a(r’ — Ry)]dr dr . (18)

We apply the Fourier transform method after substituting the integral representation
of the Coulomb operator, equation (16). We substitute the analytical expressiBa of
functions, equation (2), into the above equation, and using the Rayleigh expansion of the
plane wavefunctions, equation (15), the expression for these integrals involving a three-
dimensional integral representation [12,17, 20, 21, 36, 37] is
= mjy+ (my —mj) — (mg — my) + (m3 — mj)

(lh—1) — (=) <l < U1 —1) + 12— 1)
(I3 —13) — (la—13)| <lza < (I3 —13) + (la — 1)
i = max(—Ij; m; —l; + 1)) fori =1,2,3,4
i = min(l;; m; +1; — 1)) fori =1,2 3,4
[Yia(s, 017 = L= )¢f + 555 + s(1 = 5)x?
[Vaat. 01 = (L= ¢ + 15 +1 (1= )
v=[(1—5)Ra1— (1 —1)Ra3 — R3]
np=ni+np+h+lh—1— j
nyg=ng+ns+Ils+Ils—1— jau

+1—1 I+ 1,1

12 2 34 2

Rij = Ri — R, i,j=1234
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lh+ny+ 1+ 1)! _ _
nalama,nalama — 8(4 5 2! (2] 1 (I’ll +h 2 2 2n1+11—1 . 2np+10—1
oy = S+ DR+ D8 iy
(n3+lz+na+la+ 1! o 0 Ly 2rata-1

(n3+13) (ng +1g)! 73

x (=12 (215 + D! (204 + D!

L p2

XZ Z 11+l’ llm1|llm1|11 llml— )
2]+ DN2 (1 — 1) + 1!

I =0m=p11

I 122 ! ! / /
. lomo|lombs|l, — Lmy — mb)

i+l (1)l { 25 2 2

XZ Z (=12 (2l + D2 (12 — 1) 4 1]!

15=0mb=p21

I3 us2

, {lams|lgmy|ls — [5m3 — my)
[3+1 373 3 3
DD @+ D2 (s — 1) + 11

l3—0 m1 31

N 24: f iy gy amallgmalla — lyma — mi)
@1, + D2 (a — [ + 11

[;=0mjy=p41
L+,
/ m2 m1
x> (ymbllhmyim'2 — mp) V"™ (Ray)
1= |11712|
X Z(lz — lymy — mb|ly — Iymy — m|liogma — ml — (m1 — mY))
12
I+,
AT TN AT TN m4 m3
x> (mllmGl'm' 4 — mB) V" (Rag)
U=l
X Y (la— lyma — mylls — lyma — mi|lagms — mly — (m3 — my))
I34
124134
T\A
XY (=) (ligma — my — (mq — m)|
A=|l12— 34|

Xlzgmg — my — (m3 — m3)|Amz — )

>3 () T
X
=0\ iz S\ Jaa ) 2metiHnset il (ngp + 1+ D (nzs + 14 1))

1 sn2+lz+ll(l _ S)n1+11+12 1 tn4+l4+13(1 _ t)n3+13+l4
X l/ l/ l/ l/
5=0 s1(1— )" =0 13(1—1)4
Ky 1 [R21712(s, X))
[712(5’ x)]2("1+l1+nz+[2)—(11+1§)—1+1

Y2 (00, ¢0)

+00
X/ ll LHl—= 13 —15+-14— 14] (Ux)
x=0

n34+1[R43’)’34(f x)]
[»-)/34(1 x)]Z(n3+l3+n4+l4) g+ —l'+1

dx dr ds. (19)

The inner semi-infinitex integral was evaluated by Gauss—Laguerre quadrature and
the outers and ¢ integrals by Gauss—Legendre formulae [12,34]. Unfortunately, as we
showed in previous work [22], for three-centre nuclear attraction integrals, the use of
Gauss-Laguerre quadrature presents severe numerical difficulties for this kind of integral,
especially for large values af since the inner integrand oscillates very rapidly due to the
spherical Bessel function, and therefore new numerical integration techniques are required.
In this work, we focus our attention on the nonlingas and D-transformations [22—-27].
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They are efficient in evaluating semi-infinite integrals of rapidly oscillating functions which
satisfy linear differential equations of the forgfr) = Y 1, pe(t) f® (), where p; are

in A, i, < kfork =12 ...,m; and whereA® is the set of infinitely differentiable
functionsa(x), which asx — 400, have an asymptotic expansion in inverse powers of
x of the form: a(x) ~ x” (a0 + 2 + % + ). liM i pp P 0) FED(x) = 0, with
k=ii+1...,mandi =12 ....omVIl>-13Y0" 10-1...0—k+Dpo#1
where p; o = lim,_, ;oo x ¥ pr(x).

In order to apply these transformations successfully, there is no need to know explicitly
the differential equation that the integrand satisfies: knowledge of its existence and its order
is sufficient. In [22] we showed the superiority of these transformations in the evaluation
of three-centre nuclear attraction integrals.

For simplicity, we shall focus our attention on the the simple case of s-functions
corresponding td; = lpb = I3 = I3 = my = my = m3 = mg = 0, but we will let the
order of the spherical Bessel functiarvary. The equation (19) can then be rewritten as

oomoo Lol e e ! !
np LN 4! _ ny _ np n3 _ ny
T 100500 = gl el gl 2n s /o s"(1—vs) /(; (1 —1)
/+oo ]gvlz[RZI'ylZ(sv )C)] 12U34[R43’734(ts x)]
0 [V12(s, ]2 [ya4(t, x)]25
wherevi, =nq +no + % andvzs =n3z+ns+ %
Now, we consider the inner semi-infiniteintegral involved in the above equation. It
is defined as
0000y 9 k[ R21y12(5, )] Kyl Razy3a(t, X))
1n100,n300 (s,1) = [ ( )]2v12 [ (t, ]ZV34
0 Y1208, X Y3a(t, x)
B / " ko[ Rorv1o(s, )] kv [ Razyaa(t, )]
i [y12(s, 0)]212 [y34(t, x)]2

jI is the root of orden of the spherical Bessel functiofi. j° is assumed to be 0.
In the following, this integral will be referred to ag (s, r), and the corresponding
integrand asF (x) = f1(x) f2(x)j;.(vx), where

Ji(vx) dx dr ds (20)

Ja(vx) dx (21)

Ja(vx) dr. (22)
n=0

filx) = [v12(s, x)]212 fal) = [V3a(t, x)]?2

Jj»(vx) satisfies a linear second-order differential equation given [31, 35] by

i (x) 2 (vx) (23)

X
(vx)2 =212 —A C (x)2— 22—

= pra() i (vx) + p21(x) i (ux). (24)
Assuming thatR,;1v45(s, x) = R21\/(1 - s){l2 + s§22 + 51 —s5)x2 = /B1 + a1x? and

Razya(s, x) = R43\/(1 —$)¢2 +5L2+t(1— t)x2 = /B2 + apx?, the functionsfi(x) and
f2(x) satisfy linear second-order differential equations given [31, 35] by

Svx) = —

filx) = x~ [(2vl+1m+5—} (1)(x)+[rl—5x—} 2 ) (25)
= p120) ;P () + paa@) 2 (x) (26)
falx) = x~ [(2vZ+1>rz+ } D (x >+[r2—52 2} 2 (x) (27)
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= p13(X) 37 (0) + pas(x) £32 (x) (28)
where
1 1
81:_& n=— 82:—& and T = —.
o1 o1 o2 (0%

The p1; are inACY and p,; are inA© fori =1, 2, 3.

We shall now state a lemma and corollary which are proven in [26,27] and that will
be useful in determining the order of the differential equation which the integfamdl
satisfies.

Lemma. If the functions f and g satisfy linear differential equations of order and n
respectively, then their produgtg satisfies a linear differential equation of order less than
or equal tomn.

Corollary. If the coefficients of the linear differential equations thfaand g satisfy have
asymptotic expansions in inverse powersxofsx — +o0, then so do the coefficients of
the linear differential equation thatg satisfies.

Now, we can easily show that the functidh(x) satisfies a linear differential equation
of order 6 or less, of the form required to apply thetransformation. In a previous work
[22] we gave the linear fourth-order differential equation satisfied by a function of the form
S1(x) ji (vx), explicitly.

The coefficientsp, for k = 1,2,...,6 of the linear differential equation that(x)
satisfies are linear combinations pf;, p2;, i = 1, 2,3 and their successive derivatives,
thus p; € A% wherei, <0fork=1,2,...,6.

The behaviour of'(x) and its successive derivatives are dominated by the exponentially
decreasing, and its successive derivatives, thus lim ., p!' " (x) F*(x) = 0, fork =
i,i+1,...,6,andi = 1,2,...,6. One can easily show that o = lim,_, ;o x *p;(x) = 0,
thenVl > 1,30 Il —1)...(d —k+Dpro=0#1.

The conditions required to apply the nonlineBrtransformation are satisfied. The
approximationsD® to J (s, r) satisfiesM = 6m + 1 equations given [26, 27] by

Xn 5 m=1 5
D® = / Ftyde+ > F® @)y ﬁL n=012,..., 6m. (29)
0 =0 i—0 *n

The x,, are chosen to satisfy @ xg < x1 < -+ < xgn, and lim,_, ;o x, = +00. D,S? and
the By, fork =0,1,...,5;i =0,1,...,m — 1 are theM unknowns.

Now if we choosex, = jf“, forn=0,1,2,..., which are the zeros af' (x), then we
can reduce the order of the above set of equationd te 5m + 1 which can be rewritten
[23-25] as

Xy 5 m=1 5
DO = / F(t)dr + Z F® (x,) xk+1 Z ﬁi n=0,1,2 ..., 5m. (30)
0 =1 i—0 “*n

D® and thep;; for k = 1,2,...,5;i = 0,1,...,m — 1 are theM unknowns. These
expressions are implemented in an original set of Fortran 77 subroutines.
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4. The general case

In the general case, the semi-infiniteintegral involved in the two-electron multicentre
integrals.7"22">"4l4ms s 1y which will be referred ag/; (s, 1) is of the form [12,17, 20, 21]

n1limy,n3lams

~

7 +oo kl‘l -4—l [Rzl’YlZ(sv -x)] ]€n34+l [R43'734(t, _X)]
Jg(s, 1) :/ X" (vx) =2l 2 31
¢ 0 ” [V12(s, )] [Va4(t, x)]™3 (31)
+00 /jﬁl ni )kn12+% [R217712(s, X)] k,,34+% [Razy34(, x)] (32)
= X vX
n=0YJx & [712(‘9’ x)]m12 ['}’34(t, X)]m34

my, M, R12, N34, M12, M3g, V12(s, x) andyss(t, x) are defined according to equation (19).

Using the previous arguments, one can easily show that the integrand of the semi-infinite
x integral involved in equation (31) satisfies a sixth-order linear differential equation of the
form required to apply theD- and D-transformations. The order of the set of equations
which gives the approximatio®® is M = 6m + 1 but it can be reduced tosb+ 1 by
choosing thex, = j"™ forn =0,1,2,...,5mn.

5. Discussion

The exact values of integrals (21) and (32) are computed to 20 correct decimals using the
series expansions given by equations (22) and (32) (see tables 4 and 5). (A Fortran 77
routine has been specially devised for this purpose.)

The finite fj'_’fﬂ F(x)dx involved in equations (22) and (32) anﬁ’f Fx)dx =

Z?;Ol fj{rl F(x)dx involved in equation (30) are evaluated using Gauss—Legendre
quadrafure of order 16. The set of equations (30) is solved using Gaussian elimination
with maximal column pivoting.

The calculation time using th®-transformation computed with an IBM RS6000 340
is noted (see tables 1 and 5). We also used the epsilon algorithm of Wynn [28, 29] and the
Levin u-transform [29, 30] to evaluate the semi-infiniteintegral 7 (s, #) (equation (21))
and J; (s, 1) (equation (31)) by accelerating the convergence of the infinite series given by
equations (22) and (32). The calculation time is also computed to show the superiority of
D-transformation (see tables 2, 3 and 6). The integf#l. % (equation (20)) is evaluated
for different values ofiq, ny, ns, n4 and, using theD-transformation of order 2, Levin’s

Table 1. Evaluation of.7 (s, t) (equation (21)) using th®-transformation (equation (30)). Time
is in milliseconds. §& = 2.1, {, = 26,3 =3.1,¢4 =18, Ry = 1.2, R, = 3.25, R3 = 4.25,
R4 = 6.75 ands = 0.01).

t m  niz naa A DP Error Time

001 1 2 2 0 0.693350864597446916D-06 0.1812D-07 0.05
0.01 2 3 2 2 0.594119031449745757D-06 0.2319D-11 0.19
0.01 3 3 3 3 0.579443696446507191D-06 0.1294D-14 0.48
0.01 4 4 4 4 0.138323510330356551D-05 0.1778D-16 0.98
099 1 2 2 0 0.335139744246110843D-03 0.4174D-06 0.04
099 2 3 2 2 0.260138750356833778D-03 0.2036D-14 0.19
099 3 3 3 3 0.461713233934115124D-03 0.5421D-19 0.49
099 4 4 4 4 0.191325914385519213D-02 0.6505D-18 0.97
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Table 2. Evaluation of 7 (s, r) (equation (21)), Levin'si-transform. Time is in milliseconds.
((1=21,0,=26,03=31,¢4=18, Ry =12, R = 325, R3 = 425, R4 = 6.75 and

s = 0.01).

t m  ni2 n3s A un(So) Error Time
001 2 2 2 0 0.668576020932511367D-06 0.6651D-08 0.55
0.01 4 3 2 2 0.594087778432344762D-06 0.2893D-10 1.30
001 6 3 3 3 0.579443844056614544D-06 0.1463D-12 2.23
0.01 8 4 4 4 0.138323514777015398D-05 0.4448D-13 3.84
099 2 2 2 0 0.333367847810568435D-03 0.1355D-05 0.57
099 4 3 2 2 0.260139032317670401D-03 0.2820D-09 1.31
099 6 3 3 3  0.461713233441734898D-03 0.4924D-12 2.24
099 8 4 4 4 0.191325914385478339D-02 0.4094D-15 3.82

Table 3. Evaluation of 7(s, ) (equation (21)), the epsilon algorithm of Wynn. Time is in
milliseconds. § = 2.1, ¢ = 26,43 = 31,8 = 1.8, Ry = 1.2, R, = 3.25, R3 = 4.25,
R4 = 6.75 ands = 0.01).

t m  niz na A € Error Time

001 2 2 2 0 0.678328605359331317D-06 0.3102D-08 0.56
0.01 4 3 2 2 0.594143016808293294D-06 0.2630D-10 1.30
001 6 3 3 3 0.579483040814865933D-06 0.3934D-10 2.23
0.01 8 4 4 4 0.138323522632148885D-05 0.1230D-12 3.88
099 2 2 2 0 0.334526801546043326D-03 0.1955D-06 0.55
099 4 3 2 2 0.260140497449965564D-03 0.1747D-08 1.31
099 6 3 3 3 0.461713234344733115D-03 0.4106D-12 2.23
099 8 4 4 4 0.191325914385569651D-02 0.5037D-15 3.85

Table 4. Evaluation of 7 (s, ) (equation (21)) using the DGLGQ routine (Gauss—Laguerre
quadrature of ordeiNg;) available from IBM—-ESSL mathematical library [38].1(= 2.1,
£ =26,03=314,4 =18, R1 =12, Rp = 3.25, R3 = 4.25, R4 = 6.75 ands = 0.01.)

t Ngr n1i2 n3a A DGLDQ Exact values

0.01 40 2 2 0 0.626353439912286D-06 0.67522698757187D-06
0.01 20 3 2 2 0.684327058147507D-06 0.59411671256553D-06
0.01 10 3 3 3 0.648248032098591D-06 0.579443697 740 71D-06
0.01 40 4 4 4 0.116766324234304D-05 0.13832351032857D-05
099 32 2 2 0 0.367771794129447D-03 0.33472235103420D-03
099 64 3 2 2 0.200636251584565D-03 0.260138 750354 79D-03
0.99 48 3 3 3  0.479123239274658D-03 0.46171323393411D-03
099 64 4 4 4 0.200161369995836D-02 0.19132591438551D-02

u-transform of order 6 and the epsilon algorithm of Wynn of order 6 (see tables 7 and 8).
From the values reported in table 4, note that the use of Gauss—Laguerre quadrature

even to high order (for instance 64) gives inaccurate results, especiallydod ¢ close

to O or 1. If we lets,tr = 0 or 1, the integrand”(x), and equations (21) and (31) will

be reduced to the ternj (vx), because the termg(x),i = 1,2 become constants and

hence the asymptotic behaviour of the integrdf@) cannot be represented by a function

of the form e**g(x) whereg(x) is not a rapidly oscillating function. We also note that

the regions close t6 = ¢+ = 0 ands = ¢+ = 1 carry very small weight because of their
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Table 5. Evaluation of7¢ (s, ) (equation (31)). The inner semi infinite integral was evaluated
using the D-transformation of order 3Q§6>). Time is in milliseconds. & = 2.1, {2 = 2.6,

3 = 31,8 = 18, R1 = 1.2, Rp = 325, R3 = 4.25, R4 = 6.75, m12 =

m3q=2n3s+1ands =t = 0.01.)

2n12 + 1,

56
» D

N
iy
N

3
[
r

3
=

Exact values

Error

Time

0.811031D-07
0.286 313D-06
0.982 144D-06
0.157 213D-05
0.268 975D-05
0.960641D-05
0.113655D-03
0.357697D-03

OO0 DMWNDN
OO BMWNDN
o bdbwhb,ownN
OO WNWEW

0.811009 169633874 602D-07
0.286 312 754 031 869 044D-06
0.982 155428 849 900 776D-06
0.157213518 681 928 447D-05
0.268 976 960 759 980 355D-05
0.960 686 068 198 986 670D-05
0.113661 593530865 794D-03
0.357682012 033 322 643D-03

0.2D-11
0.1D-14
0.1D-10
0.7D-11
0.2D-10
0.4D-09
0.7D-08
0.1D-07

0.47
0.49
0.48
0.48
0.48
0.49
0.48
0.49

Table 6. Evaluation ofJ; (s, r) in the general case (equation (31)) using Levinrsansform of
order 8 ¢3(So)) and the epsilon algorithm of order 8&?)). Time is in milliseconds. ¢ = 2.1,
{2 =26,03=31,84=18, Ry =12, Ry =325, R3 = 4.25, R4 = 6.75, m12 = 2n12 + 1,

m34 = 2n34+ 1 ands = = 0.01.)

0)

ni2 nza my A ug(Sp) Error Time ¢ Error Time

2 2 2 3 0.811039D-07 0.3D-11 2.12 0.811031D-07 0.2D-11 2.10
2 2 3 1 0.286313D-06 0.6D-13 2.35 0.286313D-06 0.8D-13 2.33
3 3 4 3 0.982162D-06 0.7D-11 3.20 0.982196D-06 0.4D-10 3.24
4 4 3 2 0.157214D-05 0.3D-11 3.57 0.157213D-05 0.7D-11 3.54
4 4 4 3 0.268979D-05 0.2D-10 3.87 0.268984D-05 0.7D-10 3.83
5 5 4 4 0.960736D-05 0.5D-09 4.62 0.960742D-05 0.6D-09 4.59
6 6 5 5 0.113679D-03 0.2D-07 5.79 0.113696D-03 0.3D-07 5.82
6 6 6 6 0.357823D-03 0.1D-06 6.26 0.358112D-03 0.4D-06 6.20

Table 7. Evaluation ofj:fgg;;’s“gg

(equation (20)). The inner semi-infinite integral was evaluated

using theD-transformation of order 2172;6)). The outer finites andt integrals were evaluated
using the Gauss-Legendre quadrature of order 8. Time is in milliseco®is= ((1.2, 0, 0),
Ry = (3.25,0,0), R3 = (4.25,0,0) and R4 = (6.75,0,0). ¢1 = 2.1, ¢ = 2.6, ¢3 = 3.1 and

4 =18.)

ni1 np» n3 ng4 A Exactvalues Dés) Error Time

1 1 1 1 0 0.114695794283946D-06 0.114695D-06 0.5D-16 7.0
2 1 2 1 1 0.850849767895866D-07 0.850849D-07 0.1D-16 9.0
2 2 2 2 2 0.392236030612953D-07 0.392236D-07 0.2D-18 11.0
3 2 3 2 3 0.370453241022581D-07 0.370453D-07 0.5D-19 12.0
3 3 3 3 3 0.145388237339498D-07 0.145388D-07 0.6D-21 14.0

expressions”2(1 — s)", t"4(1 — t)"s.

6. Conclusion

The use of the series expansion given by equations (22) and (32) is prohibitively long for

sufficient accuracy, especially forz close to 0 or 1.



8950 H Safouhi ad P E Hoggan

Table 8. Evaluation ofj?lzggf;(?g (equation (20)). The inner semi-infinite integral was evaluated

using Levin'su-transform of order 6us(Sp)) and the epsilon algorithm of order éé )). The

outer finites andr integrals are evaluated using the Gauss—Legendre quadrature of order 8. Time
is in milliseconds. g1 = (1.2,0,0), R; = (3.25,0,0), Rz = (4.25,0,0) and R4 = (6.75, 0, 0).
01=21,0=26,{3=31andgs =1.8.)

n1 n2 n3z n4 A ue(So) Error Time eéo) Error Time

0.11469D-06 0.6D-16 47.0 0.11469D-06 0.2D-15 48.0
0.85084D-07 0.3D-17 63.0 0.85084D-07 0.6D-16 64.0
0.39223D-07 0.7D-18 83.0 0.39223D-07 0.3D-17 89.0
0.37045D-07 0.2D-18 115.0 0.37045D-07 0.2D-18 120.0
0.14538D-07 0.1D-19 132.0 0.14538D-07 0.4D-19 141.0

W wWNN
WNDN PP
WWNN
WNN PR
W wnN PO

Using the epsilon algorithm and Levintransform, we accelerate the convergence of
the infinite oscillating series given by equations (22) and (32), but the accuracy is still
insufficient compared with the accuracy obtained using@gansformation (see tables 1—

3, 5-8).

In tables 1-3 fors = 0.01, r = 0.01, n1» = n3s = 3 andA = 3 we obtain 14 exact
decimals in 0.48 ms usin@,’, 13 exact decimals in 3.48 ms using Levimgransform
of order 8, and 12 exact decimals in 3.88 ms using the epsilon algorithm of order 8. For
s =0.01,r =0.99,n1, = 3, n34 = 2 andr = 2 we obtain 14 exact decimals in 0.19 ms
using D;ﬁ), 12 exact decimals in 2.24 ms using Levinistransform of order 6 and 12
exact decimals in 2.23 ms using the epsilon algorithm of order 6. The evaluation using
the D-transformation is thus shown to be 10-12 times faster than the alternatives and even
more accurate.

In tables 5 and 6, fony, = n3s = 2, m, = 2 andi = 3 we obtain 11 exact decimals
in 0.47 ms usingdy’, 2.12 ms using Levin's u-transform of order 8 and 2.10 ms using the
epsilon algorithm of order 8. Fori, = n3s = 6, m, =5 andi = 5 we obtain eight exact
decimals in 0.48 ms usin@f), seven exact decimals in 5.79 ms using Levigansform
of order 8 and in B2 using the epsilon algorithm of order 8.

From the results listed in tables 7 and 8, note that the uge-afnd D-transformations

is more accurate for the evaluation]jjfgg’;’;‘gg given by equation (20) than the use of Levin

u-transform, the epsilon algorithm and the series expansion, sinch tbieorder 2 yields
to better accuracy (more than 15 exact decimals) than the Lewitransform of order 6
and the Epsilon-Algorithm of order 6, with major run-time saving.

In most cases, th®- and D-transformations are very efficient in evaluating rapidly
oscillatory infinite integrals. They produce approximatioR§’ and D™ which asm
becomes large converge very quickly to the exact value.
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